

International Hydrogen Symposium: Fuel Cell Buses

Randy MacEwen, Ballard CEO 23 Oct 2019

"Mobility's second great inflection point."

(McKinsey)

0---0-0-0-0-0-00-000

00-0-0-0000

Why FC HDM?

- strongest value proposition
- lowest barrier to refueling infrastructure
- significant contribution to emissions reduction

In Feb 2019, EU set emission reductions for Class 8 trucks, requiring reductions of 30% by 2030; expect extended to buses in 2022.

DAF

MAN

FZ 0127

MIMM

Hydrogen fuel cell buses are electric buses.

JUS

Fuel cells enhance the performance of electric buses.

400-550km Proven range

Significant reduction in vehicle weight (carry more passengers)

Rapid refueling speeds (6 to 10 minutes)

1:1 replacement of conventional vehicles

There will be more than 2,000 FCEB on the road by 2020.

7

FCEBs have demonstrated performance

- >20 years of road-experience
- >16 million km in service
- 237 buses in operation powered by Ballard
- Operation in challenging routes and climates

www.bctransit.e

MARCH 1

9348

BALLARD[®] Performance of FCEBs

Based on bus fleet monitored by Ballard in 2018 and 2019

- ✓ Range: up to 500 km (depending on H2 storage)
- ✓ Fuel consumption: less than 8kg/100
- ✓ Fuel cell stack durability: > 30,000 hrs (proven in service)
- ✓ FCEB current maintenance cost: €0.30/km
- ✓ Environmental conditions:
 - Fuel cell power systems operates from -40°C to +50°C ambient temperature
 - Next generation module will include freeze start from -25°c

Performance of FCEBs 100% fuel cell power Battery/fuel cell hybrid power HD6 HD6 WT & EU/US P3 P4, P5 __EU/US___ HD6, HD85, MD30 _ 2002 2004 2006 2008 2010 2012 2014 2016 2018 96%

Capital costs of fuel cell buses ordered in different years (non-articulated 12m buses)

Year of bus order & relevant project

* **FCH JU MAWP** is the Fuel Cells and Hydrogen Joint Undertaking's Multi-Annual Work Plan, the document that sets out the work plan and strategic targets for the second phase of the FCH JU's programme of research and innovation.

Source: Strategies for joint procurement of fuel cell buses - A study for the Fuel Cells and Hydrogen Joint Undertaking - 2018

Distribution

 Centralized hydrogen production facility with <u>100% renewable</u> and low cost electricity.

Electrolysis

- The electrolytic hydrogen can be transported to several depots via **tube trailers** in a region (150 km radius)
- Hydrogen prices will be in the range €5-7/kg (depending on local electricity prices and volume of demand)
- <u>Hydrogen will reach parity with diesel</u> on a per kilometre basis with volume fleet (>100 vehicles)

Fossil parity

Dispensing

This analysis indicates that, the fuel cell bus can be the most economical option at scale with green hydrogen

12 m Single-deck urban bus annuitised total cost of ownership

Additional bus driver costs

Infrastructure maintenance

Bus drivetrain maintenance

Bus regular maintenance

Depot overhead costs

Infrastructure Capex

Fuel costs

Bus Capex

Wasserstoffstation HafenCity

Fuel cell electric buses and renewable hydrogen provide an attractive value proposition for zero-emission public transit.

nder.

We deliver fuel cell power for a sustainable planet

www.ballard.com